3.296 \(\int \frac {(a+b \sinh ^{-1}(c x))^2}{x \sqrt {d+c^2 d x^2}} \, dx\)

Optimal. Leaf size=223 \[ -\frac {2 b \sqrt {c^2 x^2+1} \text {Li}_2\left (-e^{\sinh ^{-1}(c x)}\right ) \left (a+b \sinh ^{-1}(c x)\right )}{\sqrt {c^2 d x^2+d}}+\frac {2 b \sqrt {c^2 x^2+1} \text {Li}_2\left (e^{\sinh ^{-1}(c x)}\right ) \left (a+b \sinh ^{-1}(c x)\right )}{\sqrt {c^2 d x^2+d}}-\frac {2 \sqrt {c^2 x^2+1} \tanh ^{-1}\left (e^{\sinh ^{-1}(c x)}\right ) \left (a+b \sinh ^{-1}(c x)\right )^2}{\sqrt {c^2 d x^2+d}}+\frac {2 b^2 \sqrt {c^2 x^2+1} \text {Li}_3\left (-e^{\sinh ^{-1}(c x)}\right )}{\sqrt {c^2 d x^2+d}}-\frac {2 b^2 \sqrt {c^2 x^2+1} \text {Li}_3\left (e^{\sinh ^{-1}(c x)}\right )}{\sqrt {c^2 d x^2+d}} \]

[Out]

-2*(a+b*arcsinh(c*x))^2*arctanh(c*x+(c^2*x^2+1)^(1/2))*(c^2*x^2+1)^(1/2)/(c^2*d*x^2+d)^(1/2)-2*b*(a+b*arcsinh(
c*x))*polylog(2,-c*x-(c^2*x^2+1)^(1/2))*(c^2*x^2+1)^(1/2)/(c^2*d*x^2+d)^(1/2)+2*b*(a+b*arcsinh(c*x))*polylog(2
,c*x+(c^2*x^2+1)^(1/2))*(c^2*x^2+1)^(1/2)/(c^2*d*x^2+d)^(1/2)+2*b^2*polylog(3,-c*x-(c^2*x^2+1)^(1/2))*(c^2*x^2
+1)^(1/2)/(c^2*d*x^2+d)^(1/2)-2*b^2*polylog(3,c*x+(c^2*x^2+1)^(1/2))*(c^2*x^2+1)^(1/2)/(c^2*d*x^2+d)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.34, antiderivative size = 223, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 6, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.214, Rules used = {5764, 5760, 4182, 2531, 2282, 6589} \[ -\frac {2 b \sqrt {c^2 x^2+1} \text {PolyLog}\left (2,-e^{\sinh ^{-1}(c x)}\right ) \left (a+b \sinh ^{-1}(c x)\right )}{\sqrt {c^2 d x^2+d}}+\frac {2 b \sqrt {c^2 x^2+1} \text {PolyLog}\left (2,e^{\sinh ^{-1}(c x)}\right ) \left (a+b \sinh ^{-1}(c x)\right )}{\sqrt {c^2 d x^2+d}}+\frac {2 b^2 \sqrt {c^2 x^2+1} \text {PolyLog}\left (3,-e^{\sinh ^{-1}(c x)}\right )}{\sqrt {c^2 d x^2+d}}-\frac {2 b^2 \sqrt {c^2 x^2+1} \text {PolyLog}\left (3,e^{\sinh ^{-1}(c x)}\right )}{\sqrt {c^2 d x^2+d}}-\frac {2 \sqrt {c^2 x^2+1} \tanh ^{-1}\left (e^{\sinh ^{-1}(c x)}\right ) \left (a+b \sinh ^{-1}(c x)\right )^2}{\sqrt {c^2 d x^2+d}} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*ArcSinh[c*x])^2/(x*Sqrt[d + c^2*d*x^2]),x]

[Out]

(-2*Sqrt[1 + c^2*x^2]*(a + b*ArcSinh[c*x])^2*ArcTanh[E^ArcSinh[c*x]])/Sqrt[d + c^2*d*x^2] - (2*b*Sqrt[1 + c^2*
x^2]*(a + b*ArcSinh[c*x])*PolyLog[2, -E^ArcSinh[c*x]])/Sqrt[d + c^2*d*x^2] + (2*b*Sqrt[1 + c^2*x^2]*(a + b*Arc
Sinh[c*x])*PolyLog[2, E^ArcSinh[c*x]])/Sqrt[d + c^2*d*x^2] + (2*b^2*Sqrt[1 + c^2*x^2]*PolyLog[3, -E^ArcSinh[c*
x]])/Sqrt[d + c^2*d*x^2] - (2*b^2*Sqrt[1 + c^2*x^2]*PolyLog[3, E^ArcSinh[c*x]])/Sqrt[d + c^2*d*x^2]

Rule 2282

Int[u_, x_Symbol] :> With[{v = FunctionOfExponential[u, x]}, Dist[v/D[v, x], Subst[Int[FunctionOfExponentialFu
nction[u, x]/x, x], x, v], x]] /; FunctionOfExponentialQ[u, x] &&  !MatchQ[u, (w_)*((a_.)*(v_)^(n_))^(m_) /; F
reeQ[{a, m, n}, x] && IntegerQ[m*n]] &&  !MatchQ[u, E^((c_.)*((a_.) + (b_.)*x))*(F_)[v_] /; FreeQ[{a, b, c}, x
] && InverseFunctionQ[F[x]]]

Rule 2531

Int[Log[1 + (e_.)*((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.)]*((f_.) + (g_.)*(x_))^(m_.), x_Symbol] :> -Simp[((
f + g*x)^m*PolyLog[2, -(e*(F^(c*(a + b*x)))^n)])/(b*c*n*Log[F]), x] + Dist[(g*m)/(b*c*n*Log[F]), Int[(f + g*x)
^(m - 1)*PolyLog[2, -(e*(F^(c*(a + b*x)))^n)], x], x] /; FreeQ[{F, a, b, c, e, f, g, n}, x] && GtQ[m, 0]

Rule 4182

Int[csc[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[(-2*(c + d*x)^m*Ar
cTanh[E^(-(I*e) + f*fz*x)])/(f*fz*I), x] + (-Dist[(d*m)/(f*fz*I), Int[(c + d*x)^(m - 1)*Log[1 - E^(-(I*e) + f*
fz*x)], x], x] + Dist[(d*m)/(f*fz*I), Int[(c + d*x)^(m - 1)*Log[1 + E^(-(I*e) + f*fz*x)], x], x]) /; FreeQ[{c,
 d, e, f, fz}, x] && IGtQ[m, 0]

Rule 5760

Int[(((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_))/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Dist[1/(c^(m
 + 1)*Sqrt[d]), Subst[Int[(a + b*x)^n*Sinh[x]^m, x], x, ArcSinh[c*x]], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[
e, c^2*d] && GtQ[d, 0] && IGtQ[n, 0] && IntegerQ[m]

Rule 5764

Int[(((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_))/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Dist
[Sqrt[1 + c^2*x^2]/Sqrt[d + e*x^2], Int[((f*x)^m*(a + b*ArcSinh[c*x])^n)/Sqrt[1 + c^2*x^2], x], x] /; FreeQ[{a
, b, c, d, e, f, m}, x] && EqQ[e, c^2*d] && GtQ[n, 0] &&  !GtQ[d, 0] && (IntegerQ[m] || EqQ[n, 1])

Rule 6589

Int[PolyLog[n_, (c_.)*((a_.) + (b_.)*(x_))^(p_.)]/((d_.) + (e_.)*(x_)), x_Symbol] :> Simp[PolyLog[n + 1, c*(a
+ b*x)^p]/(e*p), x] /; FreeQ[{a, b, c, d, e, n, p}, x] && EqQ[b*d, a*e]

Rubi steps

\begin {align*} \int \frac {\left (a+b \sinh ^{-1}(c x)\right )^2}{x \sqrt {d+c^2 d x^2}} \, dx &=\frac {\sqrt {1+c^2 x^2} \int \frac {\left (a+b \sinh ^{-1}(c x)\right )^2}{x \sqrt {1+c^2 x^2}} \, dx}{\sqrt {d+c^2 d x^2}}\\ &=\frac {\sqrt {1+c^2 x^2} \operatorname {Subst}\left (\int (a+b x)^2 \text {csch}(x) \, dx,x,\sinh ^{-1}(c x)\right )}{\sqrt {d+c^2 d x^2}}\\ &=-\frac {2 \sqrt {1+c^2 x^2} \left (a+b \sinh ^{-1}(c x)\right )^2 \tanh ^{-1}\left (e^{\sinh ^{-1}(c x)}\right )}{\sqrt {d+c^2 d x^2}}-\frac {\left (2 b \sqrt {1+c^2 x^2}\right ) \operatorname {Subst}\left (\int (a+b x) \log \left (1-e^x\right ) \, dx,x,\sinh ^{-1}(c x)\right )}{\sqrt {d+c^2 d x^2}}+\frac {\left (2 b \sqrt {1+c^2 x^2}\right ) \operatorname {Subst}\left (\int (a+b x) \log \left (1+e^x\right ) \, dx,x,\sinh ^{-1}(c x)\right )}{\sqrt {d+c^2 d x^2}}\\ &=-\frac {2 \sqrt {1+c^2 x^2} \left (a+b \sinh ^{-1}(c x)\right )^2 \tanh ^{-1}\left (e^{\sinh ^{-1}(c x)}\right )}{\sqrt {d+c^2 d x^2}}-\frac {2 b \sqrt {1+c^2 x^2} \left (a+b \sinh ^{-1}(c x)\right ) \text {Li}_2\left (-e^{\sinh ^{-1}(c x)}\right )}{\sqrt {d+c^2 d x^2}}+\frac {2 b \sqrt {1+c^2 x^2} \left (a+b \sinh ^{-1}(c x)\right ) \text {Li}_2\left (e^{\sinh ^{-1}(c x)}\right )}{\sqrt {d+c^2 d x^2}}+\frac {\left (2 b^2 \sqrt {1+c^2 x^2}\right ) \operatorname {Subst}\left (\int \text {Li}_2\left (-e^x\right ) \, dx,x,\sinh ^{-1}(c x)\right )}{\sqrt {d+c^2 d x^2}}-\frac {\left (2 b^2 \sqrt {1+c^2 x^2}\right ) \operatorname {Subst}\left (\int \text {Li}_2\left (e^x\right ) \, dx,x,\sinh ^{-1}(c x)\right )}{\sqrt {d+c^2 d x^2}}\\ &=-\frac {2 \sqrt {1+c^2 x^2} \left (a+b \sinh ^{-1}(c x)\right )^2 \tanh ^{-1}\left (e^{\sinh ^{-1}(c x)}\right )}{\sqrt {d+c^2 d x^2}}-\frac {2 b \sqrt {1+c^2 x^2} \left (a+b \sinh ^{-1}(c x)\right ) \text {Li}_2\left (-e^{\sinh ^{-1}(c x)}\right )}{\sqrt {d+c^2 d x^2}}+\frac {2 b \sqrt {1+c^2 x^2} \left (a+b \sinh ^{-1}(c x)\right ) \text {Li}_2\left (e^{\sinh ^{-1}(c x)}\right )}{\sqrt {d+c^2 d x^2}}+\frac {\left (2 b^2 \sqrt {1+c^2 x^2}\right ) \operatorname {Subst}\left (\int \frac {\text {Li}_2(-x)}{x} \, dx,x,e^{\sinh ^{-1}(c x)}\right )}{\sqrt {d+c^2 d x^2}}-\frac {\left (2 b^2 \sqrt {1+c^2 x^2}\right ) \operatorname {Subst}\left (\int \frac {\text {Li}_2(x)}{x} \, dx,x,e^{\sinh ^{-1}(c x)}\right )}{\sqrt {d+c^2 d x^2}}\\ &=-\frac {2 \sqrt {1+c^2 x^2} \left (a+b \sinh ^{-1}(c x)\right )^2 \tanh ^{-1}\left (e^{\sinh ^{-1}(c x)}\right )}{\sqrt {d+c^2 d x^2}}-\frac {2 b \sqrt {1+c^2 x^2} \left (a+b \sinh ^{-1}(c x)\right ) \text {Li}_2\left (-e^{\sinh ^{-1}(c x)}\right )}{\sqrt {d+c^2 d x^2}}+\frac {2 b \sqrt {1+c^2 x^2} \left (a+b \sinh ^{-1}(c x)\right ) \text {Li}_2\left (e^{\sinh ^{-1}(c x)}\right )}{\sqrt {d+c^2 d x^2}}+\frac {2 b^2 \sqrt {1+c^2 x^2} \text {Li}_3\left (-e^{\sinh ^{-1}(c x)}\right )}{\sqrt {d+c^2 d x^2}}-\frac {2 b^2 \sqrt {1+c^2 x^2} \text {Li}_3\left (e^{\sinh ^{-1}(c x)}\right )}{\sqrt {d+c^2 d x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.87, size = 266, normalized size = 1.19 \[ -\frac {a^2 \log \left (\sqrt {d} \sqrt {c^2 d x^2+d}+d\right )}{\sqrt {d}}+\frac {a^2 \log (c x)}{\sqrt {d}}+\frac {2 a b \sqrt {c^2 x^2+1} \left (\text {Li}_2\left (-e^{-\sinh ^{-1}(c x)}\right )-\text {Li}_2\left (e^{-\sinh ^{-1}(c x)}\right )+\sinh ^{-1}(c x) \left (\log \left (1-e^{-\sinh ^{-1}(c x)}\right )-\log \left (e^{-\sinh ^{-1}(c x)}+1\right )\right )\right )}{\sqrt {c^2 d x^2+d}}+\frac {b^2 \sqrt {c^2 x^2+1} \left (2 \sinh ^{-1}(c x) \text {Li}_2\left (-e^{-\sinh ^{-1}(c x)}\right )-2 \sinh ^{-1}(c x) \text {Li}_2\left (e^{-\sinh ^{-1}(c x)}\right )+2 \text {Li}_3\left (-e^{-\sinh ^{-1}(c x)}\right )-2 \text {Li}_3\left (e^{-\sinh ^{-1}(c x)}\right )+\sinh ^{-1}(c x)^2 \log \left (1-e^{-\sinh ^{-1}(c x)}\right )-\sinh ^{-1}(c x)^2 \log \left (e^{-\sinh ^{-1}(c x)}+1\right )\right )}{\sqrt {c^2 d x^2+d}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(a + b*ArcSinh[c*x])^2/(x*Sqrt[d + c^2*d*x^2]),x]

[Out]

(a^2*Log[c*x])/Sqrt[d] - (a^2*Log[d + Sqrt[d]*Sqrt[d + c^2*d*x^2]])/Sqrt[d] + (2*a*b*Sqrt[1 + c^2*x^2]*(ArcSin
h[c*x]*(Log[1 - E^(-ArcSinh[c*x])] - Log[1 + E^(-ArcSinh[c*x])]) + PolyLog[2, -E^(-ArcSinh[c*x])] - PolyLog[2,
 E^(-ArcSinh[c*x])]))/Sqrt[d + c^2*d*x^2] + (b^2*Sqrt[1 + c^2*x^2]*(ArcSinh[c*x]^2*Log[1 - E^(-ArcSinh[c*x])]
- ArcSinh[c*x]^2*Log[1 + E^(-ArcSinh[c*x])] + 2*ArcSinh[c*x]*PolyLog[2, -E^(-ArcSinh[c*x])] - 2*ArcSinh[c*x]*P
olyLog[2, E^(-ArcSinh[c*x])] + 2*PolyLog[3, -E^(-ArcSinh[c*x])] - 2*PolyLog[3, E^(-ArcSinh[c*x])]))/Sqrt[d + c
^2*d*x^2]

________________________________________________________________________________________

fricas [F]  time = 0.49, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\sqrt {c^{2} d x^{2} + d} {\left (b^{2} \operatorname {arsinh}\left (c x\right )^{2} + 2 \, a b \operatorname {arsinh}\left (c x\right ) + a^{2}\right )}}{c^{2} d x^{3} + d x}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsinh(c*x))^2/x/(c^2*d*x^2+d)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(c^2*d*x^2 + d)*(b^2*arcsinh(c*x)^2 + 2*a*b*arcsinh(c*x) + a^2)/(c^2*d*x^3 + d*x), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (b \operatorname {arsinh}\left (c x\right ) + a\right )}^{2}}{\sqrt {c^{2} d x^{2} + d} x}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsinh(c*x))^2/x/(c^2*d*x^2+d)^(1/2),x, algorithm="giac")

[Out]

integrate((b*arcsinh(c*x) + a)^2/(sqrt(c^2*d*x^2 + d)*x), x)

________________________________________________________________________________________

maple [B]  time = 0.30, size = 564, normalized size = 2.53 \[ -\frac {a^{2} \ln \left (\frac {2 d +2 \sqrt {d}\, \sqrt {c^{2} d \,x^{2}+d}}{x}\right )}{\sqrt {d}}-\frac {b^{2} \sqrt {d \left (c^{2} x^{2}+1\right )}\, \arcsinh \left (c x \right )^{2} \ln \left (1+c x +\sqrt {c^{2} x^{2}+1}\right )}{\sqrt {c^{2} x^{2}+1}\, d}-\frac {2 b^{2} \sqrt {d \left (c^{2} x^{2}+1\right )}\, \arcsinh \left (c x \right ) \polylog \left (2, -c x -\sqrt {c^{2} x^{2}+1}\right )}{\sqrt {c^{2} x^{2}+1}\, d}+\frac {2 b^{2} \sqrt {d \left (c^{2} x^{2}+1\right )}\, \polylog \left (3, -c x -\sqrt {c^{2} x^{2}+1}\right )}{\sqrt {c^{2} x^{2}+1}\, d}+\frac {b^{2} \sqrt {d \left (c^{2} x^{2}+1\right )}\, \arcsinh \left (c x \right )^{2} \ln \left (1-c x -\sqrt {c^{2} x^{2}+1}\right )}{\sqrt {c^{2} x^{2}+1}\, d}+\frac {2 b^{2} \sqrt {d \left (c^{2} x^{2}+1\right )}\, \arcsinh \left (c x \right ) \polylog \left (2, c x +\sqrt {c^{2} x^{2}+1}\right )}{\sqrt {c^{2} x^{2}+1}\, d}-\frac {2 b^{2} \sqrt {d \left (c^{2} x^{2}+1\right )}\, \polylog \left (3, c x +\sqrt {c^{2} x^{2}+1}\right )}{\sqrt {c^{2} x^{2}+1}\, d}+\frac {2 a b \sqrt {d \left (c^{2} x^{2}+1\right )}\, \arcsinh \left (c x \right ) \ln \left (1-c x -\sqrt {c^{2} x^{2}+1}\right )}{\sqrt {c^{2} x^{2}+1}\, d}+\frac {2 a b \sqrt {d \left (c^{2} x^{2}+1\right )}\, \polylog \left (2, c x +\sqrt {c^{2} x^{2}+1}\right )}{\sqrt {c^{2} x^{2}+1}\, d}-\frac {2 a b \sqrt {d \left (c^{2} x^{2}+1\right )}\, \arcsinh \left (c x \right ) \ln \left (1+c x +\sqrt {c^{2} x^{2}+1}\right )}{\sqrt {c^{2} x^{2}+1}\, d}-\frac {2 a b \sqrt {d \left (c^{2} x^{2}+1\right )}\, \polylog \left (2, -c x -\sqrt {c^{2} x^{2}+1}\right )}{\sqrt {c^{2} x^{2}+1}\, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*arcsinh(c*x))^2/x/(c^2*d*x^2+d)^(1/2),x)

[Out]

-a^2/d^(1/2)*ln((2*d+2*d^(1/2)*(c^2*d*x^2+d)^(1/2))/x)-b^2*(d*(c^2*x^2+1))^(1/2)/(c^2*x^2+1)^(1/2)/d*arcsinh(c
*x)^2*ln(1+c*x+(c^2*x^2+1)^(1/2))-2*b^2*(d*(c^2*x^2+1))^(1/2)/(c^2*x^2+1)^(1/2)/d*arcsinh(c*x)*polylog(2,-c*x-
(c^2*x^2+1)^(1/2))+2*b^2*(d*(c^2*x^2+1))^(1/2)/(c^2*x^2+1)^(1/2)/d*polylog(3,-c*x-(c^2*x^2+1)^(1/2))+b^2*(d*(c
^2*x^2+1))^(1/2)/(c^2*x^2+1)^(1/2)/d*arcsinh(c*x)^2*ln(1-c*x-(c^2*x^2+1)^(1/2))+2*b^2*(d*(c^2*x^2+1))^(1/2)/(c
^2*x^2+1)^(1/2)/d*arcsinh(c*x)*polylog(2,c*x+(c^2*x^2+1)^(1/2))-2*b^2*(d*(c^2*x^2+1))^(1/2)/(c^2*x^2+1)^(1/2)/
d*polylog(3,c*x+(c^2*x^2+1)^(1/2))+2*a*b*(d*(c^2*x^2+1))^(1/2)/(c^2*x^2+1)^(1/2)/d*arcsinh(c*x)*ln(1-c*x-(c^2*
x^2+1)^(1/2))+2*a*b*(d*(c^2*x^2+1))^(1/2)/(c^2*x^2+1)^(1/2)/d*polylog(2,c*x+(c^2*x^2+1)^(1/2))-2*a*b*(d*(c^2*x
^2+1))^(1/2)/(c^2*x^2+1)^(1/2)/d*arcsinh(c*x)*ln(1+c*x+(c^2*x^2+1)^(1/2))-2*a*b*(d*(c^2*x^2+1))^(1/2)/(c^2*x^2
+1)^(1/2)/d*polylog(2,-c*x-(c^2*x^2+1)^(1/2))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ -\frac {a^{2} \operatorname {arsinh}\left (\frac {1}{c {\left | x \right |}}\right )}{\sqrt {d}} + \int \frac {b^{2} \log \left (c x + \sqrt {c^{2} x^{2} + 1}\right )^{2}}{\sqrt {c^{2} d x^{2} + d} x} + \frac {2 \, a b \log \left (c x + \sqrt {c^{2} x^{2} + 1}\right )}{\sqrt {c^{2} d x^{2} + d} x}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsinh(c*x))^2/x/(c^2*d*x^2+d)^(1/2),x, algorithm="maxima")

[Out]

-a^2*arcsinh(1/(c*abs(x)))/sqrt(d) + integrate(b^2*log(c*x + sqrt(c^2*x^2 + 1))^2/(sqrt(c^2*d*x^2 + d)*x) + 2*
a*b*log(c*x + sqrt(c^2*x^2 + 1))/(sqrt(c^2*d*x^2 + d)*x), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {{\left (a+b\,\mathrm {asinh}\left (c\,x\right )\right )}^2}{x\,\sqrt {d\,c^2\,x^2+d}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*asinh(c*x))^2/(x*(d + c^2*d*x^2)^(1/2)),x)

[Out]

int((a + b*asinh(c*x))^2/(x*(d + c^2*d*x^2)^(1/2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (a + b \operatorname {asinh}{\left (c x \right )}\right )^{2}}{x \sqrt {d \left (c^{2} x^{2} + 1\right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*asinh(c*x))**2/x/(c**2*d*x**2+d)**(1/2),x)

[Out]

Integral((a + b*asinh(c*x))**2/(x*sqrt(d*(c**2*x**2 + 1))), x)

________________________________________________________________________________________